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Abstract 
This study investigates the use of artificial intelligence (AI) in liver cell biology by analyzing protein expression 

and localization patterns using the Human Protein Atlas (HPA) Liver Tissue Section dataset. Convolutional neural 

networks (CNNs) and multi-layer perceptron (MLP) models were employed to classify protein localization and 

predict expression levels, respectively. The CNN model achieved high test accuracy (87%) with balanced precision 

and recall, demonstrating strong performance in distinguishing cellular localization. The MLP model also 

achieved reliable predictions with a mean absolute error (MAE) of 0.14 on the test set. These findings highlight 

AI’s potential to advance liver-specific protein analysis, offering valuable insights for future research in liver 

biology and disease diagnosis. Future work could expand this framework to incorporate hybrid models for 
enhanced interpretability and accuracy. 
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1. Introduction 

The liver is an essential organ with complex cellular structures and functions critical to human metabolism, 

detoxification, and immune response. Liver cell biology has historically been explored through a combination of 

histological, biochemical, and genetic approaches, yet challenges remain in comprehensively mapping protein 

expression and cellular localization across different liver cell types. The Human Protein Atlas (HPA)  Liver Tissue 

Section dataset provides a vast, publicly accessible repository of liver-specific protein expression profiles, offering 

detailed insights into protein localization, expression levels, and potential functions within liver cells. Despite the 

rich data available, traditional analytical methods are often insufficient in extracting complex patterns from high-

dimensional datasets, limiting the depth of insights possible in liver cell biology (Uhlen et al., 2019). Recent 

advancements in artificial intelligence (AI), particularly in machine learning and deep learning, present powerful 

tools for analyzing complex biological data (Esteva et al., 2019). By automating pattern recognition and predictive 

analysis, AI can uncover correlations, functional implications, and novel insights within extensive datasets like 

HPA. For instance, convolutional neural networks (CNNs) can analyze image-based protein localization data to 

identify subcellular patterns, while natural language processing (NLP) models can correlate protein functions and 

annotations with liver-specific pathways (Yamashita et al., 2020). Such models hold potential to accelerate 

discoveries in liver biology, enhance understanding of liver-specific protein roles, and facilitate precision medicine 

applications, such as biomarker discovery for liver diseases. Several studies have applied AI models to similar 

datasets, revealing unique applications and highlighting limitations. For example, Su et al. (2020) used CNNs to 

http://www.ijassa.com/


Saba et al: Utilizing AI for Liver Cell Biology: Insights and Research Gaps through Analysis of the Human Protein Atlas 

(HPA) Liver Tissue Dataset 

 

JSSHA VOL 1, ISSUE 1, 2023 21 

 

 

assess subcellular localization patterns in kidney tissues, achieving high accuracy in cellular component 

classification. Similarly, Zhang et al. (2019) demonstrated that multi-layer neural networks could predict tissue-

specific protein expressions based on protein interaction networks. Although these studies show promising 

applications, gaps remain in using AI to interpret liver-specific datasets, especially concerning complex expression 

patterns across hepatocytes, Kupffer cells, and hepatic stellate cells, each with distinct roles in liver function and 

pathology. 

This study aims to harness AI to analyze liver protein expression and localization data from the HPA Liver Tissue 

dataset, focusing on key objectives: 

- Identify liver cell-type-specific protein expression patterns. 

- Uncover subcellular localization trends across liver cell types. 

- Evaluate AI model performance in identifying and classifying proteins by function and localization within 

liver cells. 

- Identify research gaps in AI-based liver cell biology that could guide future studies. 

By integrating AI with liver tissue data, this research seeks to bridge current gaps in understanding liver cell 

biology and foster a data-driven approach to liver disease research and therapy development. 

 

3.1 Literature Review 

Advancements in artificial intelligence (AI), particularly in deep learning, have opened new avenues for 

analyzing complex biological datasets, offering immense potential for cell biology research. In liver cell 

biology, where protein expression and localization play critical roles in understanding liver function and 

pathology, AI-driven analyses can reveal unique insights from high-dimensional datasets like the Human 

Protein Atlas (HPA) - Liver Tissue Section. Traditional methods, while useful, often fall short in 

managing large-scale data and uncovering nuanced patterns, underscoring the value of AI in enhancing 

our understanding of liver-specific proteins and cellular behaviors (Sanchez et al., 2020). 

Studies in other tissue-specific fields illustrate the strengths of AI models in protein expression and 

localization analysis. For example, Nguyen et al. (2019) employed convolutional neural networks (CNNs) 

to accurately predict subcellular protein localization patterns across tissue types, with results showing 

AI’s capability to recognize subtle localization differences that are otherwise challenging for traditional 

methods. The use of CNNs in such research not only improves predictive accuracy but also enables the 

mapping of complex spatial patterns, crucial for understanding liver-specific protein distributions across 

diverse cellular structures. 

In addition to CNNs, other neural network architectures, like recurrent neural networks (RNNs) and 

autoencoders, are increasingly applied to protein expression data, aiming to capture dynamic expression 

trends and variations. Wang and Zhang (2021) applied RNNs to time-series protein expression data, 

capturing temporal changes and enabling the identification of expression cycles specific to disease states. 

These findings underscore the versatility of AI models in interpreting protein data, although 

interpretability remains a noted challenge. Many AI models function as “black boxes,” which limits 

biological insight and highlights a need for interpretable AI approaches in protein expression analysis 

(Ching et al., 2020). 

For liver-specific research, AI applications remain relatively nascent. Some studies, such as Miller et al. 

(2020), have explored liver tissue data to analyze protein biomarkers for liver disease, finding that AI 
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models can pinpoint biomarkers with higher sensitivity than traditional statistical methods. However, 

these studies also reveal a gap in comprehensive, liver-focused research, where AI could illuminate 

cellular-level insights, such as hepatocyte function or Kupffer cell interactions, critical to liver biology. 

AI applications in cellular biology mirror advancements in digital banking fraud detection, where 

anomaly identification techniques reveal cellular irregularities, much like fraud patterns (Nuthalapati, A., 

2023). Cloud-integrated big data systems offer scalable processing, facilitating in-depth analysis of large 

HPA liver datasets (Aravind, 2023). Blockchain verification systems provide secure frameworks useful in 

the validation of protein data in liver cell biology (Nadeem et al., 2023). AI-driven monitoring of plant 

health parallels predictive modeling in cellular health, offering insights into liver cell behavior (Suri, 

2022). Real-time AI processing, as seen in healthcare VR applications, suggests potential for on-demand 

analysis of liver tissue data (Naqvi et al., 2023). AI-optimized risk frameworks in banking illustrate 

efficient data analysis models for interpreting protein expressions (Nuthalapati, A., 2023). Disease 

forecasting in agriculture aligns with protein pattern analysis for early detection of liver diseases (Abbas 

et al., 2023). IoT-driven data lake solutions support handling and processing of vast HPA datasets, vital 

for detailed liver cell insights (Suri et al., 2023). Lastly, adaptive AI models (Janjua et al., 2023) in energy 

management offer flexible approaches for evolving liver biology research needs. 

Despite the promise of AI in cell biology, limitations persist. Data quality, model interpretability, and the 

need for liver-specific training datasets are prominent issues. Future research could benefit from hybrid 

AI models combining CNNs with attention mechanisms to enhance interpretability and performance. 

Overall, AI holds significant potential for liver cell biology, promising data-driven discoveries that could 

improve our understanding of liver function, disease, and cellular biology at a molecular level. 

 

3. Methodology  

This study utilized the Human Protein Atlas (HPA) - Liver Tissue Section dataset to investigate liver-

specific protein expressions and localization patterns using AI-based methods. The dataset was accessed 

through the HPA’s public portal (https://www.proteinatlas.org), focusing on protein expressions, levels, 

and subcellular localization data in liver tissues. Data selection emphasized liver cell-specific proteins and 

their localization within hepatocytes, Kupffer cells, and hepatic stellate cells to provide insights into liver 

cell biology. 

Data preparation involved comprehensive cleaning and validation to ensure dataset reliability and 

consistency. Inconsistent entries, such as missing or duplicate data, were identified and managed. Nearest-

neighbor imputation was applied for missing numerical values, and mode imputation was used for 

categorical variables. We employed a consensus approach, cross-validating liver-specific protein 

expressions with multiple HPA data sections, including the cell and tissue atlases. Discrepancies were 

cross-checked with scientific literature, and data that could not be validated were excluded. Following 

validation, feature engineering was conducted to prepare the dataset for AI analysis. Protein expression 

levels were normalized using min-max scaling, ensuring compatibility with AI model inputs, while 

cellular localization data were converted to binary vectors indicating the presence or absence of proteins 

in cellular components like the nucleus, cytoplasm, or membrane. 

After data preprocessing, the dataset was divided into training, validation, and test sets in a 70-15-15 ratio 

to maximize generalization and prevent overfitting. Two AI models were developed for analysis: a 
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convolutional neural network (CNN) for image-based cellular localization data and a multi-layer 

perceptron (MLP) for numerical protein expression levels. 

CNN Model for Image-Based Cellular Localization 

The CNN model was developed to analyze liver cell images stained with proteins. The model architecture 

consisted of an input layer, three 2D convolutional layers with ReLU activation and max pooling, 

followed by two dense layers and a final softmax layer to classify protein localization across liver cell 

compartments. Training was conducted using the Adam optimizer with a learning rate of 0.001, running 

for 50 epochs with a batch size of 32. As shown in Figure 1, the CNN model’s training and validation 

loss stabilized around epoch 30, indicating effective learning without significant overfitting. 

 

Fig. 1 Training and Validation Loss of CNN Model across Epochs 

MLP Model for Numerical Protein Expression Data 

The MLP model was designed to predict liver protein expression levels. It received numerical liver 

protein expression data as input vectors, processed through three fully connected hidden layers with 

ReLU activation, followed by a regression output layer for expression prediction. The MLP model was 

trained using the RMSprop optimizer, with a learning rate of 0.001, over 30 epochs. Training results, 

displayed in Figure 2, show model stabilization after epoch 20. 

 

Fig. 2 Training and Validation Loss of MLP Model across Epochs 
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Model Performance EvaluationEvaluation metrics included accuracy, precision, recall, and F1-score 
for the CNN model, and mean absolute error (MAE) for the MLP model, as summarized in Table 1 and 
Table 2. 

Table 1. CNN Model Performance Metrics 
Metric Training 

Set 

Validation 

Set 

Test 

Set 

Accuracy 0.88 0.86 0.87 

Precision 0.89 0.85 0.86 

Recall 0.87 0.84 0.85 

F1-Score 0.88 0.85 0.86 

 

Table 2: MLP Model Performance for Protein Expression Levels 
 

Metric Training 
Set 

Validation 
Set 

Test 
Set 

Mean Absolute Error (MAE) 0.12 0.15 0.14 

 

Confusion Matrix for CNN Model  

To further assess classification accuracy, a confusion matrix (Figure 3) was created for the CNN model, 
illustrating high counts of true positives (TP) and true negatives (TN) with minimal false positives (FP) and 
false negatives (FN). High TP and TN values indicate the model’s ability to classify cellular localization 
accurately. 

 

 
Fig. 3 Confusion Matrix for CNN Model on Test Set 

 

ROC Curve for CNN Model  

The ROC curve for the CNN model, shown in Figure 4, demonstrates an area under the curve (AUC) of 0.91, 

suggesting strong specificity and sensitivity in predicting cellular localization. An AUC of 0.91 indicates robust 

model performance. 
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Fig. 4 ROC Curve for CNN Model 

 

Interpretability and Challenges 
Challenges included data imbalances, with certain proteins underrepresented in specific liver cell compartments. 

Data augmentation was applied to bolster representation in these classes, improving model performance. 

Additionally, interpretability was a focus due to the complexity of neural networks. Grad-CAM was used for the 

CNN model to visualize influential image regions (Figure 5), while SHAP was employed for the MLP model to 

identify significant features in predicting protein expressions. Highlighted regions indicate image areas that most 

influenced CNN predictions. Also, Cross-validation (5-fold) confirmed model robustness, with a standard deviation 

of ± 2% across folds, supporting model stability. 

 

Fig. 5 Grad-CAM Heatmap for CNN Model 
 

Real-World Application 

To test real-world applicability, both models were evaluated on an unseen dataset from HPA’s liver tissue section. 

The CNN model achieved 85% accuracy, while the MLP model reached an MAE of 0.16, confirming 

generalizability and practical potential for liver-specific protein research and clinical applications. This detailed 

methodology demonstrates a structured, rigorous approach to analyzing liver protein expression data with AI, 

generating insights valuable for liver cell biology.  
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4. Results 

  

The following section interprets the performance metrics of the CNN and MLP models trained on the Human 

Protein Atlas (HPA) - Liver Tissue Section dataset, summarizing the models’ ability to predict protein localization 

and expression levels in liver cells.The CNN model achieved high accuracy in predicting cellular localization, with 

an overall test accuracy of 87%, and consistently strong precision, recall, and F1-scores across the training, 

validation, and test sets (as shown in Table 1 from the Methodology). These metrics reflect the model's effective 

learning of spatial localization features, with minimal misclassification. 

 

The MLP model, designed to predict protein expression levels, demonstrated a mean absolute error (MAE) of 0.14 

on the test set, as seen in Table 2. This low MAE across training, validation, and test sets indicates that the model 

achieved stable and reliable predictions for protein expression levels within liver cells. 

The performance stability of both models was further validated through 5-fold cross-validation, with a standard 

deviation of ±2% across metrics, indicating robustness and generalizability. 

  

5. Discussion  

The results suggest that both CNN and MLP models effectively captured liver-specific protein 

expression and localization patterns in the HPA dataset, providing a valuable AI-driven approach to 

liver cell biology research. The CNN model achieved high accuracy and F1-scores, with an AUC of 

0.91 on the ROC curve, indicating robust performance in identifying cellular localization. This 

performance aligns with recent studies, such as Li et al. (2021), which have demonstrated CNNs’ 

effectiveness in protein localization analysis by capturing spatial features from high-dimensional 

cellular images. The CNN’s low false positive and false negative rates, as shown in the confusion 

matrix, further validate its potential in accurately predicting subcellular localization, making it suitable 

for applications in clinical and research settings where precise localization is critical (Ching et al., 

2020). 

The MLP model achieved a mean absolute error of 0.14, highlighting its ability to predict protein 

expression levels across liver cell types with consistent accuracy across training, validation, and test sets. 

This accuracy suggests that the MLP model is suitable for predicting protein expression trends in liver 

cells, though it has limitations in capturing more complex, non-linear relationships compared to models 

that incorporate attention mechanisms or recurrent structures (Esteva et al., 2019). Further enhancement 

could involve integrating additional layers or hybrid models to increase prediction accuracy for complex 

expression data. 

Despite these promising results, several challenges were encountered. The dataset showed class 

imbalance, with certain liver-specific proteins underrepresented in certain cellular compartments. 

Addressing this through data augmentation improved model accuracy, but the imbalance still presents a 

limitation for model generalizability. Additionally, interpretability remains a challenge, particularly with 

complex models like CNNs. Grad-CAM heatmaps provided some interpretative value for the CNN, 

highlighting regions within cellular images most influential for the model’s predictions, though further 

interpretability tools are needed to provide comprehensive insight into model decision-making (Miller et 

al., 2020). 

In real-world applications, the results from this study indicate that AI models trained on liver-specific 

datasets could support protein analysis, biomarker discovery, and diagnostic research in liver cell biology. 

The CNN model’s high specificity and sensitivity make it particularly promising for subcellular 

localization tasks, potentially aiding liver disease diagnostics and protein targeting research. Future 
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studies could improve these models by incorporating hybrid architectures or multi-modal datasets, further 

enhancing AI’s role in data-driven liver cell biology research. 

 

5. Conclusion  

This study demonstrates that AI-driven models, specifically CNN and MLP architectures, can successfully analyze 

protein localization and expression patterns within liver-specific datasets from the Human Protein Atlas. The CNN 

model’s high classification accuracy and balanced performance in precision and recall underscore its suitability for 

tasks requiring detailed cellular localization insights. Likewise, the MLP model achieved a low mean absolute 

error, showing strong potential for predicting liver protein expression levels accurately across different cell types. 

Together, these models highlight the applicability of AI for advancing liver cell biology research by providing 

reliable tools for data-driven discovery, biomarker identification, and precision medicine. 

 

The study also encountered several challenges, including class imbalance and the complexity of interpreting deep 

learning models. Addressing these issues through data augmentation and interpretability tools such as Grad-CAM 

has provided insights into model decision-making. Future research should consider hybrid models or ensemble 

approaches, which may further improve interpretability and performance, enhancing AI’s impact on liver cell 

biology and disease research. These findings illustrate the potential of AI to offer scalable, high-throughput 

solutions to long-standing challenges in liver cell biology, supporting progress toward improved liver disease 

understanding and treatment.   
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