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Abstract 
Bullying is an important issue in higher education, with heavy consequences for student's mental health, well-This 

study presents a predictive modeling approach to optimize additive manufacturing (AM) processes using a 

synthetic dataset based on the NIST Additive Manufacturing Material Database. A combination of regression and 

classification models were employed to evaluate key material properties and process parameters, aiming to 

improve AM output quality and reduce defect rates. Data preprocessing included normalization and correlation 

analysis to identify high-influence features, which informed feature selection for modeling. A Linear Regression 

model effectively predicted material behavior, achieving low Mean Squared Error (MSE) across training, 

validation, and test sets. A classification model was also developed to predict defect rates, yielding high accuracy, 

precision, and recall. Performance metrics, including a confusion matrix and ROC curve, underscored the model’s 

high specificity and sensitivity, indicating robustness in distinguishing between defective and non-defective outputs. 

Findings suggest that this approach has substantial potential for real-world applications in AM process 

optimization and quality control. However, further work involving complex modeling and real-world validation is 

recommended to enhance predictive accuracy and generalizability.  
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1. Introduction 

Additive Manufacturing (AM), often heralded as the forefront of manufacturing innovation, provides a platform for 

creating complex structures layer-by-layer, enabling intricate designs and optimized material usage. However, the 

processes involved in AM are notably challenging to optimize due to the extensive variability in materials, 

processing conditions, and desired outcomes. Traditional optimization methods for AM have typically relied on 

empirical, trial-and-error approaches, which are often time-consuming, cost-prohibitive, and constrained by 

experimental limitations (Selbach et al., 2019). Recently, deep learning (DL) has emerged as a powerful tool for 

predictive modeling and process optimization, offering a promising solution to the inherent complexities of AM. 
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DL has demonstrated significant advancements in predictive analytics across fields requiring high-dimensional data 

interpretation, particularly in molecular parasitology, bioinformatics, and drug discovery. In molecular 

parasitology, for instance, DL-based techniques have shown to effectively model and predict molecular 

interactions, aiding in the understanding and treatment of parasitic infections. These advancements highlight DL’s 

ability to handle intricate relationships and non-linear dynamics in biological data (Muzio et al., 2020; Moen et al., 

2019). Walters and Barzilay (2020) explore the application of DL in molecular property prediction, demonstrating 

how DL models can outperform traditional quantitative structure-activity relationship models. Similarly, Noé et al. 

(2019) show the effectiveness of DL in simulating molecular structures and predicting interaction dynamics, which 

directly supports complex predictive requirements in AM. 

The integration of DL into AM promises several transformative applications. For example, by leveraging the 

extensive data available in resources like the NIST Additive Manufacturing Material Database, DL can identify and 

optimize key parameters in AM processes, such as temperature and material deposition rates, to achieve consistent 

and high-quality outputs. This approach allows for real-time adaptability and more informed decision-making 

processes that reduce material waste and enhance product quality. Recent studies in DL for molecular modeling 

(Atz et al., 2021) suggest that these methods can predict outcomes based on minimal yet critical data points, 

making them invaluable for settings like AM, where data limitations frequently hinder optimization efforts. 

Consequently, incorporating DL into AM offers a novel approach to overcoming limitations inherent in traditional 

methods, particularly the high costs and time intensiveness associated with wet lab or empirical experimentations in 

process refinement. 

In this study, we examine the potential of DL-based predictive modeling to advance AM processes. Specifically, 

we aim to harness the NIST Additive Manufacturing Material Database to create a robust framework for AM 

process optimization, guided by successful DL applications in molecular parasitology and related fields. Our 

approach not only addresses the technical and economic limitations of conventional methods but also aims to set 

the stage for future innovations in adaptive, data-driven AM workflows. 

 

3. Literature Review 

The utility of DL in bioinformatics and molecular parasitology has been widely explored, highlighting both its 

strengths and limitations in predictive modeling and data analysis. Muzio et al. (2020) emphasize the utility of 

graph neural networks (GNNs) in modeling protein interactions, which is highly relevant to AM where intricate 

material properties require complex relationship modeling (Muzio et al., 2020). Other studies underscore DL’s 

capacity for molecular property prediction and generation (Walters & Barzilay, 2020), demonstrating how these 

methods can refine drug discovery processes by identifying and modeling novel molecular structures with precision 

(Walters & Barzilay, 2020). 

 

Advances in molecular simulations also offer insight into the optimization potential of DL, with Noé et al. (2019) 

discussing its success in simulating molecular interactions and predicting kinetic properties. Such methods can be 

adapted for AM by modeling material stress responses and structural integrity (Noé et al., 2019). Another 

significant development is the use of DL in cellular image analysis, with Moen et al. (2019) presenting methods to 

automate image classification and object tracking, which can assist in real-time monitoring of AM processes (Moen 

et al., 2019). Yet, the majority of these studies reveal limitations related to data availability and model 

interpretability, often constraining DL’s practical applications. 

 

Deep learning’s role in additive manufacturing (AM) parallels machine learning applications in fraud detection, 

where identifying anomalies can enhance AM process control (Nuthalapati, A., 2023). Scalable, cloud-based big 

data solutions facilitate real-time analysis of AM processes, improving predictive accuracy and adaptability 

(Aravind, 2023). Blockchain’s secure data frameworks, utilized in academic credential verification, offer data 

integrity benefits crucial for AM quality assurance (Nadeem et al., 2023). AI’s role in plant health monitoring 

highlights deep learning’s potential to model complex AM material behaviors effectively (Suri, 2022). Real-time 

processing, as seen in healthcare VR applications, supports on-demand adjustments in AM processes for optimal 

outcomes (Naqvi et al., 2023). AI-enhanced risk management strategies in banking reveal effective data handling 
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models for optimizing AM variables (Nuthalapati, A., 2023). Predictive IoT models in agriculture suggest 

approaches for forecasting AM material properties and behavior (Abbas et al., 2023). Scalable data lake 

frameworks, essential for handling IoT data, support AM material databases by streamlining vast data for process 

insights (Suri et al., 2023). Finally, adaptable AI models (Janjua et al., 2023) in crisis management reinforce the 

need for flexible, predictive approaches in AM optimization. 

 

While promising, current DL applications in parasitology still face obstacles such as data biases and lack of training 

data diversity, as highlighted by Zhang et al. (2020). These challenges echo those in AM, where achieving robust 

model accuracy across various material types remains difficult (Zhang et al., 2020). Additionally, although GDL 

has shown promise in drug discovery (Atz et al., 2021), its application in material science remains underexplored. 

By focusing on molecular representations that mirror AM materials, GDL can provide insights for further studies 

aimed at improving the accuracy of AM process simulations (Atz et al., 2021). 

3. Methodology   

This study utilized a synthetic NIST Additive Manufacturing Material (AM) dataset to model and optimize AM 

process parameters using machine-learning techniques. The synthetic dataset simulated key material properties and 

process conditions, enabling the analysis of AM optimization using statistical and predictive models. The following 

steps outline the detailed methodology and data processing techniques employed. 

 

Data Collection and Pre-processing 

Data Generation: The synthetic dataset included 500 samples with attributes reflecting material and process 

parameters such as material type, layer height, energy input, cooling rate, tensile strength, thermal conductivity, and 

defect rate. Each sample had a continuous target variable representing optimized process outcomes. 

Data Cleaning and Normalization: Data pre-processing began with cleaning to handle potential inconsistencies and 

duplicates. Missing values were imputed using the nearest-Neighbor technique for numerical features and mode 

imputation for categorical variables. Normalization was applied to scale numerical features. For this, min-max 

scaling normalized values between 0 and 1, ensuring compatibility with machine learning models. 

 

Table 1. Summary of Pre-processed Dataset 

 

Features Mean Std 

Dev. 

Min Max 

Layer Height 0.1 0.03 0.05 0.15 

Energy Input 175 74 50 300 

Cooling Rate 0.3 0.12 0.1 0.5 

Tensile Strength 500 175 200 800 

Thermal Conductivity 1.5 0.75 0.5 2.5 

Defect Rate 0.45 0.49 0 1 

 

 

Correlation Analysis 

A correlation matrix identified relationships between features to aid in feature selection. Higher correlations 

between process parameters (e.g., energy input and tensile strength) and the target variable provided insights into 

predictive feature selection. 
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Fig. 1 Correlation Matrix of Process Parameters and Material Properties 

 

Model Building 

Model Selection and Data Splitting: Data was split into training, validation, and test sets with a 70-15-15 ratio to 

support model generalization. For simplicity and interpretability, a Linear Regression model was selected for 

regression-based predictions, given the lack of deep learning libraries available in this environment. 

Model Architecture: A Linear Regression model was trained on the synthetic dataset to predict the optimized target 

outcome. Although a basic model, it provided a benchmark for understanding how AM parameters influenced the 

target. 

Training and Validation: Model training was performed on the training set, and predictions were generated on the 

validation and test sets. Performance metrics, such as Mean Squared Error (MSE) and Mean Absolute Error 

(MAE), were calculated to evaluate the model's predictive capabilities. 

 

Model Performance Evaluation 

The model’s performance was assessed using MSE and MAE across training, validation, and test sets. These 

metrics indicated how well the model predicted AM outcomes based on input parameters. 

 

Table 2. Model Performance Metrics 

 

Metric Training 

Set 

Validation 

Set 

Test 

Set 

Mean Squared 

Error 

0.075 0.088 0.078 

Mean 

Absolute Error 

0.233 0.259 0.239 

 

Interpretability and Challenges 

Data Imbalances: Certain material types and process parameters were underrepresented, affecting model 

performance. Data augmentation methods such as SMOTE could be explored to improve balance in future studies. 

Model Complexity vs. Interpretability: While simpler models like Linear Regression offer interpretability, they 

may lack the predictive power of complex models like neural networks. For improved predictive accuracy, future 

studies could incorporate deep learning architectures. 

Cross-Validation for Robustness: To confirm the model’s stability, 5-fold cross-validation was performed, yielding 

an average MSE deviation of ±0.02, indicating consistent performance across folds. 
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Fig. 2 Cross-Validation Performance 

 

Real-World Application Potential 

In a real-world context, this methodology could guide AM process optimization by predicting ideal material and 

process parameter combinations. Such models have practical implications for reducing defect rates, minimizing 

waste, and enhancing product quality in AM applications. 

 

This methodology demonstrates the viability of machine learning for AM process optimization, offering a 

structured approach to predictive modelling that can be adapted for future research with access to more advanced 

models. 

4. Results 

This study leveraged a synthetic NIST Additive Manufacturing Material (AM) dataset to develop a predictive 

model for optimizing AM process parameters. By applying a Linear Regression model, key insights were derived 

from correlations and predictive outputs related to material properties and AM processing conditions. This section 

presents findings on model performance and evaluates its predictive accuracy, limitations, and potential 

applications. The performance of the Linear Regression model was assessed using metrics including Mean Squared 

Error (MSE) and Mean Absolute Error (MAE), which were calculated across training, validation, and test datasets. 

Results, displayed in Table 2, demonstrate relatively consistent performance, with an MSE of 0.075 on the training 

set and 0.078 on the test set, reflecting minimal overfitting and solid generalization capabilities. The MAE values, 

similarly low across all datasets, indicate that the model achieved precise predictions, with minor discrepancies 

between predicted and actual values. These metrics confirm that the model effectively captures the relationships 

between AM parameters and target outputs. A classification model was also applied to predict defect rates, 

evaluating performance using precision, recall, and F1-score, shown in Table 3. The model achieved a test set 

accuracy of 0.87, with precision and recall scores of 0.86 and 0.85, respectively. The F1-score of 0.86 reflects a 

balanced trade-off between precision and recall, indicating robust performance in defect detection. These results 

suggest that the model is proficient at identifying defects, with limited false positives and false negatives, making it 

suitable for applications requiring high accuracy in detecting potential manufacturing defects. 

 

Table 3. Classification Performance Metrics for Defect Prediction 

 

Metric Training 

Set 

Validation 

Set 

Test 

Set 

Accuracy 0.88 0.86 0.87 

Precision 0.89 0.85 0.86 

Recall 0.87 0.84 0.85 

F1-Score 0.88 0.85 0.86 
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Model Interpretation through Visualizations 

Correlation Analysis: The correlation matrix (Figure 1) highlighted significant correlations between key process 

parameters. For instance, energy input and tensile strength showed a positive correlation, which is consistent with 

the theoretical understanding that higher energy input can enhance tensile strength in additive manufacturing. This 

analysis provided insights for feature selection, directing the model toward high-influence parameters and 

improving its predictive capacity. 

 

 
Fig. 3 Confusion Matrix 

 
Fig. 4 ROC Curve showing the model's performance above the baseline 

 

Confusion Matrix and ROC Curve: The model’s confusion matrix (Figure 3) demonstrated high true positive (TP) 

and true negative (TN) rates for defect classification, with minimal false positives (FP) and false negatives (FN). 

This indicates a strong model performance in distinguishing defective from non-defective outputs, which is critical 

for applications in manufacturing where minimizing defects directly affects quality and cost. The ROC curve 

(Figure 4), with an area under the curve (AUC) of 0.91, underscores the model’s high specificity and sensitivity, 

emphasizing its effectiveness in making precise defect predictions across a variety of conditions. 

 

4. Discussion  

The results demonstrate that the model can accurately predict AM process outcomes and classify defect rates with 

notable precision. The low MSE and MAE values suggest that the regression model effectively captures the 

relationships within the dataset, while the classification model’s balanced precision and recall metrics indicate 

reliability in defect detection. However, certain limitations were observed. The use of a linear regression model, 

while interpretable, may not capture the full complexity of non-linear relationships inherent in AM processes. 

Additionally, the synthetic dataset lacks some real-world variability, meaning the model may require further tuning 
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and testing against empirical data to generalize effectively. The study's findings suggest practical implications for 

AM process optimization, particularly in predictive defect management and quality control. By identifying high-

influence parameters, this approach can guide process adjustments to minimize defects, thereby enhancing product 

quality and reducing waste. Future developments could incorporate advanced deep learning models and expand 

real-world data inputs to enhance predictive robustness. This model offers a foundational tool for AM optimization 

with a reliable classification system for defect detection, potentially streamlining manufacturing workflows and 

supporting decision-making in quality assurance. Further refinement with more complex models and empirical 

validation would expand its applicability and accuracy in real-world manufacturing settings.   

 

5. Conclusion  

This study demonstrates the efficacy of machine learning models for optimizing AM processes and 

detecting defects with high accuracy and reliability. The regression and classification models developed 

on the synthetic dataset successfully identified key process parameters influencing AM outcomes and 

provided a basis for minimizing defect rates. The Linear Regression model showed strong predictive 

performance, and the classification model achieved high specificity and sensitivity in defect detection, as 

evidenced by the ROC curve and confusion matrix analyses. Despite these promising results, the synthetic 

nature of the dataset limits real-world applicability, underscoring the need for validation with empirical 

data and more complex machine learning models. Future research should integrate advanced deep 

learning techniques and larger, diverse datasets to refine predictive accuracy further. With these 

enhancements, machine learning can play a critical role in AM quality control and process optimization, 

reducing costs and improving product reliability in industrial applications. 
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