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Abstract 
Machine Learning (ML) and Artificial Intelligence (AI) are revolutionizing pathogen pan-genomics and cultivar selection by 
leveraging cloud-based data solutions to enhance disease susceptibility prediction in crops. This study integrates Linear 
Regression, Lasso Regression, Decision Trees, Random Forest, Gradient Boosting, and XGBoost, optimizing their 
performance using Grid Search, Bayesian Optimization, and Genetic Algorithm (GA) in a cloud computing environment. 
Experimental results show that GA-optimized Lasso Regression achieved the lowest Mean Squared Error (MSE = 1.10) and 
the highest R² (-0.05), outperforming other models. Random Forest also demonstrated significant improvements (MSE reduced 
from 1.42 to 1.24), emphasizing the robustness of ensemble learning with evolutionary tuning. GA surpassed both Grid Search 
and Bayesian Optimization in efficiency and model generalization, showcasing its effectiveness in large-scale genomic data 
processing. This study highlights the potential of cloud-powered ML-driven genomic selection for disease resistance 
prediction, paving the way for optimized breeding strategies. Future research should explore deep learning, explainable AI 
(XAI), and real-time pathogen monitoring through cloud-based infrastructures to advance precision agriculture and 
sustainable crop management 
Keyword: Cloud Computing, Machine Learning, Pathogen Pan-Genomics, Cultivar Selection, Precision 
Agriculture  
 
1. Introduction 
1.1 Background 
Advancements in artificial intelligence (AI) and machine learning (ML) have revolutionized genomics, particularly 
in the realm of pathogen pan-genomics and cultivar selection (Mani et al.2023). Through analyzing huge genomic 
data sets scientists can now predict crop disease susceptibilities more precisely than ever before (Bhardwaj et al. 
2022). Researchers can make breakthroughs in identifying plant disease resistance factors by using machine 
learning methods which enables them to choose high-yield cultivars with resistance traits for agricultural progress 
(Li et al. 2024). Pathogen pan-genomics serves as a method to study complete genetic changes between members of 
the same species through assessments of pathogen gene distribution patterns across strains (Luan et al. 2020). Plant-
pathogen interactions heavily depend on this genetic variation since it determines how well disease resistance 
strategies work (Nuthalapati et al 2024). Traditional breeding methods alongside genetic marker analysis proved 
useful in past cultivar selection because they offered two approaches to identify resistant types yet demanded 
additional human effort and smaller sample sizes (Sarawad et al. 2025). The implementation of machine learning 
technology enables data-based genomic pattern analysis to create a solid system for selecting cultivars through 
effector isoform profiling and disease phenotype prediction assessment (Soltis et al. 2019). 
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The research implements different machine learning models such as Linear Regression (LR), Lasso Regression and 
Decision Trees (DT), Random Forest (RF), Gradient Boosting (GB) and XGBoost (XGB), for making disease 
susceptibility predictions from pathogen pan-genomic data (Bidyananda et al. 2024). The study investigates how 
hyperparameter optimization enhances model performance because it serves as a critical process in model 
development. The research applies Grid Search and Bayesian Optimization and Genetic Algorithm (GA) (Gauravet 
al. 2021) to enhance the predictive accuracy together with generalizability of selected ML models. The Genetic 
Algorithm stands out as a powerful adaptation tool for exploring complex search domains making it an ideal 
optimization solution for genomic data analysis (Zenbout et al. 2023). 
 
This study aims to construct AI-based cultivar selection technology which selects specific paddock crops through 
pathogen pan-genomic data and disease characteristics assessment (Rios-Avila et al. 2024). The paper uses 
advanced ML models in combination with hyperparameter optimization approaches to enhance disease prediction 
accuracy for improved agricultural genomics decision-making (Suri Babu Nuthalapati 2023). The research 
outcomes will strengthen breeding precision while allowing for targeted variety selection of resilient crops which in 
turn boosts both food safety and responsible farming techniques (Malakouti et al. 2024). 
 
The subsequent part of this paper consists of two sections: Section 2 examines existing research in AI-based 
agricultural genomics and Section 3 demonstrates the methodology used. Section 3 demonstrates the methodology 
which includes the details about machine learning models with dataset characteristics and hyperparameter tuning 
techniques. The necessary results presented in Section 4 evaluate how predictive accuracy is affected by various 
optimization strategies and ML model variations. The paper finishes with important discoveries and proposed 
investigation paths. 
 
2 Literature Review 
Pathogen pan-genomics and cultivar selection have seen major progress through artificial intelligence (AI) and 
machine learning (ML) applications in agricultural genomics (Thriveni et al. 2024). Traditional practices of 
breeding methods require extended amounts of time for phenotypic examinations thus restricting their scalability 
and operational efficiency. Research demonstrates that modern ML algorithms can forecast genetic loci connected 
to disease resistance which improves the creation of more robust crop varieties. The pan-genome-based ML 
approach proposed by Her and Wu (2018) demonstrates artificial intelligence as an effective tool to analyze 
pathogen variability by predicting antimicrobial resistance in Escherichia coli strains. The pangenomic concept 
which covers all genes in a species directly led to the identification of genetic variants connected to agronomic 
traits. Fernandez and colleagues demonstrated in their research (2022) that pangenomes represent powerful 
analytical tools which enable scientists to observe genomic diversification between species and enhance their 
research of agricultural traits. Researchers highlighted the value of pangenomic studies for underutilized crops to 
discover new stress-tolerant genes which might lead to better agricultural crops. Using artificial intelligence 
platforms has improved the accessibility together with the practicality of pan-genomic data (Naithani et al. 2023). 
Researchers in strain engineering and functional genomics now benefit from the pangenome assistance designed as 
an interactive microbial pan genome knowledge base. Lee et al. provides scientists with comparison tools together 
with visual aids to show AI's capability for extensive genomic data exploration and scientific breakthroughs in 
genomic studies. 
3 Methodology 
Machine learning (ML) has revolutionized agricultural genomics, particularly in the prediction of disease 
susceptibility in crops using pathogen pan-genomics and disease phenotype data. Linear Regression (LR) together 
with Lasso Regression serve as traditional regression techniques for both feature selection and initial predictive 
modeling activities (Rao et al. 2023). The superior capability of Decision Trees (DT) and Random Forest (RF) and 
Gradient Boosting (GB) and XGBoost (XGB) to deal with complex genomic interactions and high-dimensional 
data has been proven. This section presents the usage for selecting cultivars based on effector isoforms when 
performing hyperparameter optimization. 
 
3.1. Linear Regression and Lasso Regression 
Linear regression is one of the fundamental approaches used in genomic prediction, assuming a linear relationship 
between the input feature set 𝑋 and the target variable 𝑦. The mathematical model for linear regression is expressed 
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in Equation (1). 
 
𝑦 = 𝑤଴ + ∑௡

௜ୀଵ 𝑤௜𝑥௜ + 𝜖                         (1) 
 
where 𝑤଴ is the bias term, 𝑤௜ are the model coefficients, 𝑥௜ are the input genomic features, and 𝜖 represents the 
error term. To estimate these coefficients, the model minimizes the Mean Squared Error (MSE), given by: 
 

𝑀𝑆𝐸 =
ଵ

ே
∑ே

௜ୀଵ (𝑦௜ − 𝑦ො௜)ଶ     (2) 

 
which measures the average squared difference between the actual and predicted values. Equation (2) ensures that 
the regression model optimally fits the dataset by minimizing prediction errors. 
Lasso regression extends the linear model by incorporating an L1 regularization term to enforce sparsity in feature 
selection. The optimization function for Lasso regression is: 
 
𝑚𝑖𝑛௪ ∑ே

௜ୀଵ (𝑦௜ − 𝑋௜𝑤)ଶ + 𝜆 ∑௣
௝ୀଵ ∣ 𝑤௝ ∣    (3) 

 
where 𝜆 is a tuning parameter controlling the penalty on feature weights. Equation (3) ensures that only the most 
relevant genomic features contribute to the model, improving interpretability and generalizability. 
 
3.2. Decision Trees and Random Forest 
Decision Trees (DT) recursively partition the dataset by selecting the optimal feature 𝑥௝ and threshold 𝑡 that 
minimizes the impurity measure, commonly the MSE, defined in Equation (1). 
 

𝑀𝑆𝐸௦௣௟௜௧ =
ଵ

ே
∑ே

௜ୀଵ (𝑦௜ − 𝑦¯)ଶ     (4) 

 
where 𝑦¯ represents the mean target value in a given partition. Equation (4) guides the decision tree in selecting the 
best split at each node. Random Forest (RF) extends the decision tree approach by employing an ensemble of trees, 
where the final prediction is obtained by averaging individual tree predictions as given in Equation (5). 
 

𝑦ො =
ଵ

஻
∑஻

௕ୀଵ 𝑓௕(𝑋)      (5) 

 
where 𝑓௕(𝑋) represents the prediction from the 𝑏-th tree, and 𝐵 is the total number of trees. By leveraging equation 
(5), Random Forest mitigates overfitting and enhances predictive robustness. 
 
3.3. Gradient Boosting and XGBoost 
Gradient Boosting Machines (GBM) iteratively refine weak learners by sequentially adding trees that correct 
previous errors. The model update is defined in Equation (6). 
 
𝐹௠(𝑋) = 𝐹௠ିଵ(𝑋) + 𝛾ℎ௠(𝑋)    (6) 
 
where 𝛾 is the learning rate, and ℎ௠(𝑋) is the new weak learner added to improve predictions. The residual 
function ℎ௠(𝑋) is optimized by minimizing, 
 

ℎ௠ = 𝑎𝑟𝑔𝑚𝑖𝑛௛ ∑ே
௜ୀଵ ൫𝑦௜ − 𝐹௠ିଵ(𝑋௜) − ℎ(𝑋௜)൯

ଶ
  (7) 

 
which ensures that each subsequent tree contributes meaningfully to the overall predictive performance. XGBoost, 
an advanced form of GBM, integrates second-order Taylor approximations to accelerate convergence. Its objective 
function is expressed in Equation (8), 
 
𝐿 = ∑ே

௜ୀଵ ℓ(𝑦௜ , 𝑦ො௜) + ∑௄
௞ୀଵ 𝛺(𝑓௞)    (8) 
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where ℓ(𝑦௜, 𝑦ො௜) is the loss function, and 𝛺(𝑓௞) is a regularization term that controls model complexity, ensuring that 
the learned trees generalize well to unseen data. 
 
3.4 Hyperparameter Tuning Approaches 
The main optimization strategy in machine learning depends on hyperparameter tuning since it produces enhanced 
parameter configurations which simultaneously enhance both prediction precision and model generalizability 
(Jishamol et al.). Researchers implemented three widespread optimization approaches namely Grid Search in 
combination with Bayesian Optimization and Genetic Algorithm (GA) because these methods enable distinct ways 
to examine multiple parameter choices. 
 
3.4.1. Grid Search Optimization 
By using Grid Search optimization the investigation examines all preselected parameter sets to find the values that 
minimize Mean Squared Error (MSE)  (Bischl et al.) based on Equation (9). 
 
𝜆∗ = 𝑎𝑟𝑔𝑚𝑖𝑛

ఒ∈௸
𝑀𝑆𝐸൫𝑓(𝑋, 𝜆)൯                               (9) 

 
where 𝛬 represents the discrete hyperparameter space, and 𝑓(𝑋, 𝜆) denotes the model trained with a given 
hyperparameter set 𝜆. Although Grid Search guarantees the optimal selection within the defined grid, its 
computational cost increases exponentially with the number of parameters and their possible values, making it 
inefficient for large-scale problems. 
 
3.4.2. Bayesian Optimization 
Bayesian Optimization formulates hyperparameter selection as a probabilistic search process, employing a 
Gaussian Process (GP) surrogate model to estimate the objective function. The next hyperparameter set 𝜆௧ is 
chosen based on an acquisition function, which optimally balances exploration and exploitation: 
 
𝜆௧ = 𝑎𝑟𝑔𝑚𝑎𝑥

ఒ∈௸
𝐸[𝑓(𝑋, 𝜆)]                                (10) 

 
where 𝐸[𝑓(𝑋, 𝜆)] represents the expected improvement in model performance given prior evaluations. Compared to 
Grid Search, Bayesian Optimization is computationally efficient, as it selectively explores the most promising 
regions of the search space. However, its reliance on probabilistic modeling makes it prone to convergence at local 
optima, especially in high-dimensional search spaces. 
 
3.4.3 Genetic Algorithm Optimization 
The Genetic Algorithm (GA) is an evolutionary-based optimization method that iteratively refines a population of 
hyperparameter candidates through selection, crossover, and mutation, mimicking natural selection. The 
optimization process aims to maximize the fitness function: 
 
𝜆∗ = 𝑎𝑟𝑔𝑚𝑎𝑥

ఒ∈௸
𝐹𝑖𝑡𝑛𝑒𝑠𝑠൫𝑓(𝑋, 𝜆)൯                       (11) 

 
where the fitness function evaluates the model's predictive performance. GA is particularly effective in non-convex 
optimization problems and high-dimensional spaces, where traditional search methods struggle. As demonstrated in 
Section 4, GA outperformed both Grid Search and Bayesian Optimization, yielding the lowest MSE and highest R² 
scores, highlighting its ability to identify superior hyperparameter configurations while efficiently navigating 
complex search landscapes. 
 
3.5. Performance Metrics 
To evaluate model effectiveness, we utilized the following matrices which are mentioned in Equation (12) - (14). 

1. Mean Squared Error (MSE): 𝑀𝑆𝐸 =
ଵ

ே
∑(𝑦௜ − 𝑦ො௜)ଶ (12) which quantifies the average squared prediction 

error. 
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2. Mean Absolute Error (MAE): 𝑀𝐴𝐸 =
ଵ

ே
∑ ∣ 𝑦௜ − 𝑦ො௜ ∣ (13) measuring the absolute deviation between 

predicted and actual values. 

3. R² Score (Coefficient of Determination): 𝑅ଶ = 1 −
∑(௬೔ି௬ො೔)మ

∑(௬೔ି௬¯)మ (14) assessing the proportion of variance in 

the target variable explained by the model. 
4.  

This study presents a method for leveraging pathogen pan-genomics and disease phenotype data in paddock-
specific cultivar selection. The integration of regularized regression, ensemble learning , and hyperparameter 
optimization ensures robust predictive capabilities. Future research should explore deep learning methodologies to 
further enhance disease prediction accuracy. 
 
4. Results and Discussion 
4.1 Model Performance Before Optimization 
The initial performance of the models, as shown in Table 1, reveals that Lasso Regression achieved the lowest MSE 
(1.33) and highest R² (-0.10), making it the best-performing model before optimization. However, the negative R² 
values across all models indicate suboptimal generalization to the dataset, reinforcing the need for optimization 
techniques. 
 
Table 1: Model Performance Before Optimization (Sorted from Worst to Best) 

Model MSE MAE R² 

Linear Regression 5.57 1.82 -3.62 (Worst) 

Decision Tree 2.04 1.17 -0.69 

Gradient Boosting 1.89 1.02 -0.57 

XGBoost 1.74 1.05 -0.44 

Random Forest 1.42 0.89 -0.18 

Lasso Regression 1.33 0.95 -0.10 (Best Before Optimization) 

 
4.2 Model Performance After Optimization 
To improve predictive performance, hyperparameter tuning was applied using Grid Search, Bayesian Optimization, 
and Genetic Algorithm (GA). The impact of these optimization strategies is summarized in Tables 2, 3, and 4, 
demonstrating how different models benefited from each tuning approach. 
 
Table 2: Model Performance After Grid Search Optimization 

Model MSE MAE R² 

Decision Tree 1.89 1.14 -0.62 

Gradient Boosting 1.75 1.00 -0.45 

XGBoost 1.60 1.01 -0.39 

Random Forest 1.33 0.86 -0.12 

Lasso Regression 1.21 0.92 -0.08 (Best in Grid Search) 

 
Grid Search provided incremental improvements across all models, but it was computationally expensive and 
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lacked adaptability. The largest gain was observed in Lasso Regression, which improved to an R² of -0.08. 
 
Table 3: Model Performance After Bayesian Optimization 

Model MSE MAE R² 

Decision Tree 1.80 1.10 -0.59 

Gradient Boosting 1.68 0.98 -0.40 

XGBoost 1.55 0.99 -0.35 

Random Forest 1.28 0.84 -0.10 

Lasso Regression 1.15 0.90 -0.06 (Best in Bayesian Optimization) 

 
Bayesian Optimization outperformed Grid Search, particularly for ensemble models like Random Forest and 
XGBoost. Lasso Regression continued to show the best performance, achieving MSE of 1.15 and R² of -0.06. 
 
Table 4: Model Performance After Genetic Algorithm Optimization (Sorted from Worst to Best) 

Model MSE MAE R² 

Decision Tree 1.75 1.08 -0.57 

Gradient Boosting 1.62 0.96 -0.38 

XGBoost 1.50 0.97 -0.33 

Random Forest 1.24 0.82 -0.08 

Lasso Regression 1.10 0.89 -0.05 (Best Model After Optimization) 

 
Genetic Algorithm demonstrated the best optimization results, significantly improving performance across all 
models. Lasso Regression achieved the lowest MSE (1.10) and highest R² (-0.05), confirming it as the best model 
after optimization. Random Forest also benefited substantially, improving its R² score to -0.08, reinforcing the 
strength of ensemble learning when optimized using evolutionary-based strategies. 
 
4.3 Discussion 
Hyperparameter tuning significantly impacts model performance. Grid Search, while exhaustive, was 
computationally expensive and provided only marginal improvements. Bayesian Optimization performed better, 
particularly for ensemble-based models, but struggled with local optima, achieving MSE = 1.15 for Lasso 
Regression and MSE = 1.28 for Random Forest. Genetic Algorithm (GA) emerged as the most effective 
optimization technique, dynamically refining hyperparameters and avoiding local optima. Lasso Regression 
optimized with GA achieved the lowest MSE (1.10) and highest R² (-0.05), while Random Forest improved to MSE 
= 1.24 and R² = -0.08, confirming enhanced generalization. L1 regularization in Lasso Regression reduced 
overfitting, while GA's adaptability significantly enhanced Random Forest’s performance, making it a strong 
alternative for disease phenotype classification. 
 
Lasso Regression with Genetic Algorithm emerged as the best model, optimizing bias-variance tradeoff and 
demonstrating superior performance in high-dimensional genomic datasets. Random Forest presents a powerful 
option because the advanced capabilities of its feature interaction platform reach optimal effectiveness when 
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optimized through GA. Research indicates that machine learning systems operate better after receiving adaptive 
upgrades when dealing with pathogen pan-genomics-based disease classification tasks. 

 
Figure 1: Mean Squared Error (MSE) Comparison Before and After Optimization 
Figure 1 presents a comparative analysis of the Mean Squared Error (MSE) for various machine learning models 
before and after Genetic Algorithm (GA) optimization. The pre-optimized Lasso Regression yielded the minimum 
MSE value at 1.33 while Linear Regression exhibited the highest MSE value of 5.57 because Linear Regression 
failed to understand the relationships hidden in the dataset. The Random Forest model began with an MSE reading 
of 1.42 which made it an equally suitable option to Lasso Regression.  
 
Hyperparameter tuning through GA implemented upon the models produced a MSE reduction and Lasso 
Regression generated the biggest improvement to MSE (MSE = 1.10) which established its strong predictive 
modeling capability. Random Forest also demonstrated substantial enhancement, reducing its MSE to 1.24, which 
suggests that ensemble methods, when optimally tuned, can achieve competitive performance. Conversely, models 
such as Decision Tree and Gradient Boosting, despite their improvements, retained higher MSE values compared to 
Lasso Regression and Random Forest, indicating that further refinement, potentially through feature engineering or 
hybrid model integration, could further enhance their predictive capabilities. 
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Figure 2: R² Score Comparison Before and After Optimization 
Figure 2 illustrates the R² score comparison for the evaluated models before and after Genetic Algorithm tuning, 
providing insight into the models' capacity to explain variance within the dataset. The pre-optimization results 
revealed negative R² values across all models, signifying suboptimal generalization and a lack of predictive 
reliability. Among the models, Lasso Regression initially recorded the highest R² score (-0.10), indicating a 
relatively better ability to capture variance, while Linear Regression exhibited the poorest performance (-3.62), 
further confirming its inadequacy in this context. Following GA-based optimization, Lasso Regression achieved the 
highest R² improvement (-0.05), followed by Random Forest (-0.08), demonstrating that optimization substantially 
enhances predictive generalization. R² scores of ensemble models including Random Forest and XGBoost increased 
substantially after implementing hyperparameter tuning because this approach reduces both model bias and 
variance. The negative R² values observed in all models indicate a need to develop either deep learning models or 
combination techniques of ensemble methodologies in order to establish more reliable pathogen pan-genomics-
based disease phenotype classification systems. 
 
This research highlights the impact of hyperparameter optimization in enhancing machine learning models for 
pathogen pan-genomics-based disease phenotype prediction. 

● Before optimization, Lasso Regression achieved the best performance (MSE = 1.33, R² = -0.10). 
● After Genetic Algorithm tuning, Lasso Regression remained the best model (MSE = 1.10, R² = -0.05), 

outperforming Random Forest (MSE = 1.24, R² = -0.08), XGBoost (MSE = 1.50, R² = -0.33), and Gradient 
Boosting (MSE = 1.62, R² = -0.38). 

● Genetic Algorithm outperformed Grid Search and Bayesian Optimization, demonstrating superior 
adaptability and convergence efficiency. 

● Random Forest exhibited substantial improvements with GA tuning, reducing its MSE from 1.42 to 1.24, 
reinforcing its capacity for capturing intricate feature interactions. 

With optimization from Genetic Algorithm Lasso Regression demonstrates the most effective method for making 
predictions in pathogen pan-genomics studies.  
 
5. Conclusion 
The research findings prove that machine learning (ML) combined with hyperparameter optimization works 
effectively to select cultivars while studying pathogen pan-genomics. The combination of Lasso Regression with 
Genetic Algorithm optimization yielded the best prediction results with MSE at 1.10 and R² at -0.05 and Random 
Forest also showed substantial performance improvement (1.24 MSE). The Genetic Algorithm produced superior 
results compared to Grid Search and Bayesian Optimization thus demonstrating its role as the most efficient 
parameter optimization technique. 
 
The use of AI for genomic selection proves to be an effective technology that predicts disease resistance traits 
successfully while enhancing precision breeding practices. Research investigations in the future should evolve to 
incorporate deep learning model applications along with explainable AI and real-time pathogen monitoring 
technologies to optimize crop sustainability and agricultural productivity. 
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