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Abstract 
Cardiac arrhythmia, a condition characterized by irregular heartbeats, poses significant risks to patient health if left 

undetected or misdiagnosed. Traditional methods of arrhythmia detection, which rely on manual interpretation of 

electrocardiogram (ECG) signals, can be time-consuming and prone to error. This study proposes an automated arrhythmia 

classification system using machine learning techniques to enhance diagnostic accuracy and speed. ECG signal data is 

preprocessed and key features are extracted using signal processing methods. Various machine learning algorithms, including 

Support Vector Machines (SVM), Random Forest, and deep learning models like Convolutional Neural Networks (CNNs), are 

trained and evaluated on publicly available datasets such as the MIT-BIH Arrhythmia Database. Performance is assessed 

using metrics such as accuracy, precision, recall, and F1-score. The results demonstrate that machine learning models, 

particularly deep learning approaches, can achieve high classification accuracy, offering a reliable tool for assisting 

clinicians in arrhythmia diagnosis and potentially improving patient outcomes. 
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1. Introduction 

Cardiovascular diseases (CVDs) remain the leading cause of mortality globally, with cardiac arrhythmias a 

category of conditions characterized by irregular electrical activity in the heart posing a significant diagnostic and 

therapeutic challenge (Acharya et al. 2017). Early detection of arrhythmias such as atrial fibrillation, ventricular 

tachycardia, and supraventricular ectopic beats is critical, as these can progress into life-threatening conditions 

including stroke and sudden cardiac arrest if left untreated (Faust et al. 2018). Electrocardiography (ECG) is the 

primary non-invasive method used in clinical settings to monitor and diagnose these conditions by recording the 

heart’s electrical activity (Rajpurkar et al. 2017). However, manual interpretation of ECG signals is not only time-

consuming and error-prone but also requires expert knowledge, especially in cases with subtle waveform variations 

or noise contamination. This creates a pressing need for automated, accurate, and scalable diagnostic tools 

(Abubeker et al.). 

Recent advances in machine learning (Taye, G. T et al. 2020) and deep learning (Xu et al. 2019) have shown 

considerable promise in automating ECG signal analysis. Traditional machine learning models, such as Support 

Vector Machines (SVM), Random Forests, and k-nearest Neighbors (k-NN), rely on handcrafted features derived 

from time-domain, frequency-domain, and morphological aspects of ECG signals. While effective, these 

approaches depend heavily on domain expertise and may lack scalability across diverse datasets (Sannino, G. et al. 
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2018). In contrast, deep learning models particularly Convolutional Neural Networks (Yildirim, O. et al. 2018).  

have revolutionized signal and image processing tasks by enabling end-to-end learning from raw data (Kachuee et 

al. 2018). In the context of ECG classification, CNNs can automatically extract hierarchical features from 

waveform patterns, capturing both local and global signal characteristics relevant to arrhythmia detection (Kishor et 

al. 2025). This paper is structured as follows: Section 2 presents a detailed literature review of previous works in 

arrhythmia classification using both traditional and deep learning methods. Section 3 outlines the materials and 

methods, including dataset descriptions, preprocessing techniques, and model architectures. Section 4 discusses the 

experimental setup and evaluation metrics used to assess model performance. In Section 5, we present and analyze 

the results, comparing the effectiveness of various machine learning models. Finally, Section 6 concludes the study 

by highlighting key findings, current limitations, and potential future directions for real-time, interpretable, and 

scalable ECG-based arrhythmia detection systems. 

 

2. Literature Survey  

The classification of cardiac arrhythmias using electrocardiogram (ECG) signals has evolved substantially over 

recent decades, primarily driven by advancements in machine learning (ML) and signal processing techniques (AR, 

B et al. 2023). Traditional approaches initially focused on classical machine learning algorithms, which relied 

heavily on the manual extraction of discriminative features from ECG signals. Techniques such as Support Vector 

Machines (SVM), Decision Trees, Random Forests, and k-nearest Neighbors (k-NN) were commonly employed for 

arrhythmia classification, leveraging features derived from time-domain, frequency-domain, and morphological 

characteristics of the ECG waveform. The researchers demonstrated that SVMs, when supplied with well-

structured features such as RR intervals, P-wave and QRS complex amplitudes, heart rate variability, and wavelet 

coefficients—could achieve superior classification accuracy compared to conventional statistical methods. Random 

Forest classifiers, due to their ensemble learning capability, have shown resilience against noise and imbalanced 

data distributions, which are prevalent in ECG datasets. Nonetheless, these traditional methods require extensive 

domain expertise for effective feature engineering, thus limiting their scalability and generalizability across 

heterogeneous patient populations. 

To address these limitations, deep learning (DL) methodologies, particularly Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs), have been increasingly adopted (Goldberger et al. 2000). CNNs 

are well-suited for capturing spatial patterns and morphological features from raw ECG signals, while RNNs, 

especially Long Short-Term Memory (LSTM) networks, are effective in modeling temporal dependencies inherent 

in sequential ECG data. Hannun et al. (2019) proposed an end-to-end deep learning architecture capable of 

classifying 12 types of arrhythmias from single-lead ECG data with performance comparable to that of expert 

cardiologists. Such architectures eliminate the need for manual feature extraction and allow the models to 

autonomously learn hierarchical representations directly from raw data (Luz et al. 2016). Recent studies have also 

explored hybrid architectures that integrate CNNs with LSTMs. In these frameworks, CNN layers are used to 

extract spatial features, which are subsequently processed by LSTM layers to capture temporal dynamics (Zhao et 

al. 2019). These hybrid models have demonstrated superior performance in comparison to their standalone 

counterparts, particularly in long-duration ECG recordings. 

The availability of publicly accessible, annotated ECG datasets such as the MIT-BIH Arrhythmia Database, 

PhysioNet Challenge datasets, and the INCART database has significantly facilitated the development and 

benchmarking of arrhythmia classification models. However, the inherent class imbalance where normal beats are 

overrepresented relative to pathological beats remains a challenge. To address this, various strategies such as the 

Synthetic Minority Over-sampling Technique (SMOTE), class weighting, cost-sensitive learning, and focal loss 

functions have been employed to improve classifier sensitivity to minority classes. Signal preprocessing is another 

critical component in arrhythmia classification systems. ECG signals are often contaminated with various types of 

noise, including muscle artifacts, electrode motion, and baseline wander. Preprocessing techniques such as 

bandpass filtering, wavelet denoising, empirical mode decomposition (EMD), and accurate R-peak detection are 

essential to enhance signal quality and segmentation accuracy before classification. 

The interpretability of deep learning models has emerged as a vital consideration, particularly in high-stakes 

clinical applications. Techniques from the field of explainable artificial intelligence (XAI), including Shapley 

Additive explanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), and attention 

mechanisms are increasingly being integrated into arrhythmia classifiers. These tools provide insight into the 

decision-making processes of otherwise opaque models, thereby enhancing clinician trust and facilitating 
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regulatory acceptance. Recent research efforts have also focused on the real-time and resource-efficient deployment 

of arrhythmia classification models in wearable devices and mobile health platforms. Lightweight neural network 

architectures such as MobileNet, along with model compression techniques like pruning, quantization, and 

knowledge distillation, are being utilized to meet the computational constraints of embedded systems. 

The multimodal fusion combining ECG with other physiological signals such as photoplethysmography (PPG) and 

contextual metadata has shown promise in improving diagnostic accuracy. Parallel advancements in transfer 

learning, domain adaptation, and federated learning are addressing the challenges of model generalization and data 

privacy, which are critical for translating ML-based arrhythmia classification systems into diverse real-world 

clinical settings (Jishamol et al. 2016). The literature indicates a clear trajectory from traditional machine learning 

techniques dependent on manual feature extraction to deep learning models capable of end-to-end learning from 

raw ECG data (Kiranyaz et al. 2016). While deep learning has significantly enhanced classification performance, 

challenges remain in terms of interpretability, generalizability, and real-world implementation, warranting 

continued interdisciplinary research in this domain. 

 

3. Materials and Methods 

This section outlines the methodology employed for automated arrhythmia classification, which encompasses data 

acquisition, signal preprocessing, feature extraction, model development, and performance evaluation. The 

proposed framework accommodates both traditional machine learning and deep learning paradigms to ensure a 

comprehensive comparative analysis. 

 

3.1 Dataset Description 

The study utilizes the MIT-BIH Arrhythmia Database (Moody et al. 2001), a widely recognized benchmark dataset 

distributed by PhysioNet. This dataset comprises 48 half-hour dual-lead ECG recordings sampled at 360 Hz, 

obtained from 47 subjects. Each recording is annotated by expert cardiologists, covering a diverse set of arrhythmic 

and non-arrhythmic heartbeat classes. An analysis of the class distribution is presented to highlight the imbalance 

within the dataset. Figure 1 depicts a pie chart representation of the percentage-wise distribution of ECG classes, 

including various arrhythmias and normal beats. A small number of classes constitute most of the dataset, while 

several clinically significant arrhythmic classes are underrepresented. To further emphasize this, Figure 2 presents a 

histogram of the actual counts per class. The dominance of the ―Normal‖ class and the relative scarcity of others 

like premature ventricular contractions and atrial fibrillation are visible. This disproportion poses a significant 

challenge for supervised learning models, often leading to bias toward majority classes. To address this, resampling 

techniques such as the Synthetic Minority Over-sampling Technique (SMOTE) and class weighting were employed 

during model training to enhance the classifier’s ability to detect minority class instances. 
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Figure 1: Class distribution of ECG records across various cardiac conditions. 

Figure 2: Frequency histogram of class labels in the ECG dataset. 

 

3.2 Preprocessing of ECG Signals 

Preprocessing was carried out to enhance signal quality and prepare the data for feature extraction and 

classification. Initially, a bandpass filter (0.5–40 Hz) was applied to suppress baseline drift and high frequency 

noise (Ramesh et al. 2020). Baseline wander was further mitigated using polynomial fitting techniques. R-peak 

detection was performed using an enhanced Pan-Tompkins algorithm, enabling the segmentation of ECG signals 

into individual heartbeat windows. Each segment was normalized to zero mean and unit variance to reduce inter-

patient variability, thereby facilitating consistent model training and convergence (Martis et al. 2013). 

 

3.3 Feature Extraction and Selection 

In the traditional machine learning pipeline, a comprehensive set of features was extracted from the segmented 

ECG beats. These included time-domain parameters such as RR intervals, P-R intervals, QRS duration, and QT 

intervals, along with morphological attributes including wave amplitudes and beat slopes (Nuthalapati, S. B. et al. 

2023). Frequency-domain features were computed using power spectral density estimations and wavelet transform 

coefficients. To mitigate overfitting and reduce computational complexity, dimensionality reduction techniques 

such as Principal Component Analysis (PCA) and correlation-based feature selection were employed. These steps 

ensured that only the most discriminative features were retained for classifier training. 

3.4 Model Development 

Two main categories of classification models were implemented. Traditional machine learning models included 

Support Vector Machines (SVM), Random Forests (RF), k-nearest Neighbors (k-NN), and Logistic Regression 

(LR). These models were trained using the selected feature set, and hyperparameters were optimized via grid search 

and cross-validation. In contrast, the deep learning approach utilized a one-dimensional Convolutional Neural 
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Network (1D-CNN) trained end-to-end on raw, normalized ECG segments. The architecture consisted of stacked 

convolutional layers with ReLU activations and max-pooling operations, followed by fully connected layers with a 

softmax output for multi-class classification. Regularization techniques such as dropout and batch normalization 

were integrated to improve generalization and reduce overfitting. The CNN was trained using the Adam optimizer 

and categorical cross-entropy loss function. Furthermore, data augmentation methods including amplitude scaling 

and time-shifting were employed to enrich the training dataset and enhance model robustness. 

 

3.5 Performance Evaluation 

Model performance was evaluated using accuracy, precision, recall, F1-score, and area under the Receiver 

Operating Characteristic (ROC) curve. Given the class imbalance inherent in the dataset—where normal beats 

significantly outnumber arrhythmic ones—particular attention was paid to sensitivity and specificity for minority 

classes. Techniques such as Synthetic Minority Over-sampling Technique (SMOTE) and class weighting were 

explored to address imbalance during the training phase. 

 

3.6 Experimental Environment 

All computational experiments were conducted using Python programming language. Traditional machine learning 

models were implemented with Scikit-learn, while deep learning architectures were developed using TensorFlow 

and Keras. The dataset was partitioned into training and testing sets with an 80:20 ratio, ensuring stratified 

sampling to preserve class distribution. Five-fold cross-validation was employed for hyperparameter tuning. All 

models were trained and evaluated on a system equipped with an Intel Core i7 processor, 16 GB RAM, and an 

NVIDIA GPU to accelerate deep learning computations. 

 

4. Results and Discussion 

This section presents the experimental findings and analytical insights derived from the implementation of various 

classification models on ECG signals for arrhythmia detection. Performance is assessed across multiple traditional 

machine learning classifiers and a deep learning model, with an emphasis on classification effectiveness, model 

generalization, the impact of feature engineering, and class imbalance handling. 

 

4.1 Classification Performance 

Five models Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), k-nearest Neighbors 

(k-NN), and Convolutional Neural Network (CNN)—were evaluated for their efficacy in arrhythmia classification 

using stratified training and test datasets. The performance metrics, including accuracy, precision, recall, and F1-

score, are detailed in Table 1. 

 

            Table 1: Comparative performance of classification models on ECG signal data. 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Logistic Regression 83.4 82.1 80.5 81.3 

SVM 86.7 85.9 84.2 85.0 

Random Forest 91.2 90.4 89.7 90.0 

k-NN 84.9 83.7 82.0 82.8 

CNN (Deep Learning) 94.5 93.8 92.6 93.2 

The CNN model (Zhang et al. 2017) demonstrated superior performance across all evaluation metrics, confirming 

its effectiveness in learning complex spatiotemporal features from ECG waveforms. Random Forest also exhibited 

strong generalization ability and robustness to noise, owing to its ensemble learning structure. 

 

4.2 Confusion Matrix Analysis 

An analysis of the confusion matrices revealed that all models showed high sensitivity in detecting normal sinus 

rhythms (Silipo, R et al. 1998). However, traditional models such as Logistic Regression and SVM were prone to 

misclassifying minority arrhythmic classes, leading to higher false negative rates. In contrast, the CNN model 

displayed better classification balance, correctly identifying rare conditions such as premature ventricular 

contractions and atrial fibrillation with improved recall and precision (Nuthalapati, A. et al. 2023). Although the 

CNN achieved high overall accuracy, the confusion matrix analysis shows that some minority arrhythmia classes 
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were still misclassified. This highlights the importance of evaluating performance at a class-wise level, beyond just 

aggregate metrics, to ensure reliability across all diagnostic categories. 

 

4.3 Impact of Feature Engineering 

The classification accuracy of traditional models was significantly influenced by the quality and diversity of the 

engineered features. Time-domain intervals such as RR and PR intervals, waveform morphology, and frequency-

domain characteristics contributed to enhanced model discriminability (Nuthalapati, S. B., 2024). Dimensionality 

reduction via Principal Component Analysis (PCA) was employed to reduce overfitting and improve computational 

efficiency, particularly for SVM and Random Forest models. 

CNN models learned hierarchical features automatically from raw ECG signals, eliminating the need for manual 

feature engineering. This end-to-end capability underlines the strength of deep learning approaches in biomedical 

signal processing tasks where domain-specific feature extraction is challenging and labor-intensive. Given the 

skewed distribution of arrhythmia classes in the dataset, class imbalance posed a significant challenge to model 

training. The application of resampling techniques such as the Synthetic Minority Over-sampling Technique 

(SMOTE) (Muhammed Kunju, A. K et al. 2024) along with class-weighted loss functions, was instrumental in 

improving model sensitivity to underrepresented classes. These strategies led to marked improvements in recall and 

F1-score, particularly in Logistic Regression, SVM, and Random Forest models. While SMOTE and class 

weighting improved sensitivity to underrepresented classes, we recognize that additional techniques such as focal 

loss, undersampling, and cost-sensitive learning may further enhance minority class performance. These will be 

considered in future extensions of this work. 

 

4.4 Model Generalization with and without PCA 

To assess generalization capability, training and testing accuracy scores were compared across models, both with 

and without PCA. As shown in Figure 3, PCA enhanced generalization by reducing the train-test accuracy gap in 

most models (Nuthalapati, S et al. 2024). Random Forest with PCA achieved near-perfect training accuracy while 

maintaining strong performance on the test set, suggesting robust model learning. Similar benefits were observed in 

Logistic Regression and SVM, where PCA reduced overfitting and stabilized performance. 

Figure 3: Train and test accuracy comparison of classifiers with and without PCA. 

These observations support the use of PCA as a complementary technique in traditional pipelines, whereas CNN-

based models remained unaffected due to their ability to learn compact, relevant representations internally. 

4.5 Limitations 

This study was limited to a single dataset (MIT-BIH), which may not fully represent the variability encountered in 

real-world clinical settings. ECG signals in practice can vary significantly due to differences in patients, sensor 

types, noise conditions, and recording protocols. Additionally, while imbalance-handling methods such as SMOTE 

were applied, further techniques such as focal loss and real-time noise augmentation could improve model 

robustness. Future studies will focus on validating the approach across external datasets and deploying it in realistic 

clinical environments. 
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5. Conclusion 

This study presented a comparative analysis of traditional machine learning and deep learning models for ECG-

based arrhythmia classification. Among the models evaluated, the Convolutional Neural Network (CNN) 

demonstrated superior performance in terms of accuracy, precision, and recall, owing to its ability to learn features 

directly from raw ECG signals. Traditional models, when enhanced with feature engineering and dimensionality 

reduction via PCA, showed reasonable performance but were more sensitive to class imbalance and feature 

selection. Techniques such as SMOTE and class weighting improved minority class detection across all models. 

While CNNs offer promising results, challenges remain in model interpretability and real-world deployment. While 

our study demonstrates strong results on the MIT-BIH dataset, we acknowledge the need for further validation on 

external, real-world ECG data to ensure clinical applicability. Future work will explore advanced imbalance-

handling techniques such as focal loss and cost-sensitive learning, and will evaluate the model’s performance 

across diverse patient cohorts and recording conditions. 
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